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Abstract. This work presents a mixed-integer nonlinear mathematical pro-

gramming (MINLP) model aiming at optimizing the sum of transition and in-

ventory carrying costs in a multi-model synchronous assembly line. Different 

products are assembled in the same line in runs or campaigns, whose sequence 

and length should be optimally determined. As products show different cycle 

times, transition periods are of particular interest due to the productivity reduc-

tion. The proposed model precisely accounts for transient periods, at the time it 

incorporates further details such as semi-elaborate stocks. It is successfully ap-

plied to a real-world case study of the argentine truck trailer industry.     

Keywords. Multi-model, Synchronous Assembly Line, Lot Sizing, Sequencing.   

1 Introduction 

Modern assembly lines are highly efficient mass production systems comprising a 

number of work stations that are usually linked together by an automatic material 

handling mechanism. In general, flow lines can be classified according to the number 

of products or models produced into single model (or dedicated) and multiple model 

lines. Moreover, flow lines producing multiple models can be subdivided into mixed-

model and multi-model lines. In mixed-model lines, the production lot size is equal to 

one, whereas multi-model lines cyclically launch campaigns or runs of different mod-

els, each one having a certain length [1]. As a result, the multi-model line balancing 

problem is particularly focused on changeover (or run launching) costs, as well as 

inventory carrying costs, whose simultaneous minimization yields the optimal lot size 

for every production run. 

 

Assembly line balancing research has traditionally focused on single model assembly 

line balancing problems, which have attracted attention from operations research 

community for almost half of a century [2]. A considerable amount of work has been 

done with the aim of finding an efficient solution technique for this kind of problems, 
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including exact methods [3,4,5], heuristics [6,7,8] and meta-heuristic procedures 

[9,10]. More recently, assembly line balancing research evolved towards more realis-

tic problems by relaxing the restricting assumptions of the single-model line. Among 

them, mixed-model and multi-model flow lines are of particular interest of current 

studies due to the increasing flexibility required in modern production systems. Most 

of recent work has been focused on the solution of mixed-model assembly line bal-

ancing problems with specific constraints, using both exact methods [11] and heuris-

tic approaches [12,13], while heuristic procedures have been proposed to the optimal 

lot sizing problem in multi-model, multi-stage flow shops [13]. However, to the best 

of our knowledge, no rigorous formulations have been proposed for solving the multi-

model lot-sizing problem in synchronous assembly lines. Synchronous assembly lines 

are coordinated in such a way that product transfers take place all together, immedi-

ately after all operations are completed in all the work stations. This kind of problems 

is typically met in the automotive industry.    

 

In this work we propose three different models for solving the multi-model assembly 

line problem, presented in order of increasing complexity. The first one is an approx-

imated non-linear programming (NLP) approach, whose global optimal solution can 

be explicitly found. It can be regarded as the optimal lot-sizing problem for a single 

stage, multi-model production system. The second model is a non-linear mixed-

integer programming (MINLP) formulation accounting for the discrete nature of some 

problem variables, particularly the number of units being produced at every run, also 

taking into consideration the number of work stations comprising the line. Finally, an 

extended MINLP formulation additionally deals with the part supply problem associ-

ated to the assembly line. All the models have been successfully tested in a real-world 

assembly line producing truck trailers for the transportation industry in Argentina.         

2 Formulations of the Multi-model Lot-Sizing Problem 

2.1 NLP Model for the Single-Stage, Multi-Model Production System 

The single-stage, multi-model production system operation is organized in runs, each 

one producing a single model i  I. During the production cycle (T), every model is 

produced through a unique run of length Li, as stated by eq. 1.  

 TL
Ii

i  (1) 

Production and demand rates for all the models (pi and ri) are known data usually 

given in units per hour. As depicted in Fig. 1, the stock of models of type i at the end 

of every production run should be high enough to cover the demand for i while other 

models i’ ≠ i are being produced. Such a relationship is mathematically expressed 

through eq. 2. Note that product stocks are treated as continuous variables. 

 IiLTrLrp iiiii )()(  (2) 
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Combining eqs. 1 and 2 yields eq. 3, meaning that although demand and production 

rates are given, the production system presents no idle time only if eq. 3 is fulfilled.  

 1/
Ii

ii pr  (3) 

In this simplified model, transition costs are independent of the product sequence, and 

are incurred every time a new run is launched. Relaxing this assumption is studied in 

further sections. Moreover, transient times are neglected, i.e. no transition times be-

tween subsequent production campaigns or runs are required. If ici is the inventory 

carrying cost of a single unit of the final product i per unit time, while chi is the fixed 

cost incurred every time a new run of product i is launched, the sum of inventory 

carrying and production launching costs per unit time is given by eq. 4. 

 
Ii

i

Ii

iiii TchLrpicz /2/)(  (4) 

Minimizing eq. 4 subject to eq. 2, under the non-negativity condition of variables Li 

and T, yields a convex nonlinear programming problem whose exact solution can be 

readily obtained. The explicit solution for such an NLP formulation is given in eq. 5. 
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Although being a simplified model, it constitutes a very useful tool for estimating the 

optimal length of production runs in multi-model assembly lines. As will be shown 

later, it permits to obtain tighter bounds on the variables of more rigorous models, 

yielding significant savings in the computational effort required by global solvers.    

 

 

Fig. 1. Stocks of final products in a single-resource, multi-model production system 
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2.2 MINLP Formulation for a Multi-Model Synchronous Assembly Line 

Consider a multi-model synchronous assembly line with m workstations in series. 

Run lengths are no longer assumed to be floating numbers Li but integer multiples of 

the cycle times cti. In fact, the run length can be roughly estimated as the product 

between the cycle time and the number of models produced in the corresponding run 

(Ni). However, further corrections should be incorporated to the formulation to ac-

count for the transition times between two consecutive production runs i and i’, with 

models featuring different cycle times cti ≠ cti’. For instance, if a production run of 

model i is succeeded by a run of model i’, and cti < cti’, the last (m-1) units of the 

model i will be produced at the cycle time cti’, since the synchronous transfers be-

tween adjacent stations should wait until the upstream stations finish their work on the 

first i’-models. As a result, idle times arise at the downstream work stations, until the 

last unit of i exits the assembly line. On the contrary, if cti > cti’, the first (m-1) units 

of i’ are processed at the cycle time cti, and the idle time arises at the upstream sta-

tions, until the last unit of i exits the assembly line. 

Production sequence. Besides the model index i, we introduce the chronologically 

ordered set of runs k  K to determine the most convenient production sequence. The 

binary variable yk,i will be equal to one if the model i is produced in the k-th run. Giv-

en that we are dealing with a cyclic planning problem, the first and the last elements 

in the set K are two parts of the same production run. Moreover, it is assumed that all 

the workstations are initially occupied with the same model type, and at time t = 0 the 

first element of a different model enters the line. In other words, run k1 completes the 

last m elements of the last run in the cycle, initially filling the assembly line. Eq. 6a 

states that every run should be assigned to the production of a single model type, 

while eq. 6b stands for the relationship between the first and the last elements in the 

set K. To avoid symmetric solutions, the first run is arbitrarily assigned to model i1. 

 Kky
Ii

ik 1,        (6a)                           1
111 ,, iKik yy  (6b) 

It can be easily proved that if |K| = |I|+1, all the models are produced in a single run 

during one production cycle, and if |K| > |I|+1, one or more models can be produced 

through more than one run in the same cycle. For simplicity, we assume that |K| = 

|I|+1. 

Production lot sizing. We introduce the integer variable Nk to account for the total 

number of units of the same kind produced during run k, while NPk,i (a floating, 

nonnegative variable) equals Nk if the model produced through run k is i, and is zero 

otherwise, as stated by eq.7. Note that by convention, Nk1 = m.  

 KkNNPIiKkynNP k

Ii

ikikik ,,max, ;,  (7) 
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To limit changeover costs, we assume that every production run comprises a number 

of entities (Nk) equal or greater than the number of stations (m). In other words, only 

two different model types can at most be in-process at the same time in the line. Fur-

thermore, as the line works with synchronous transfers, transition periods (i.e., the 

time when the line is occupied with different model types) are determined by the larg-

er cycle time. Fig. 2 shows the transition period between models A, B and C, whose 

cycle times are 3, 5 and 4 h, respectively, produced by a 5-stations assembly line. 

Dotted arrows represent the movements of models of type B. Transfer times between 

subsequent workstations are included in the cycle times. At t = 0 h, station 1 starts to 

process the first unit of B in a run of 6 elements. Not before 5 h later, all the models in 

the line can be transferred to the following station, even though models of type A in 

stations 2 to 5 are finished 2 h earlier. This effect is critical in synchronous assembly 

lines.  

 

 

Fig. 2. Transition of models A, B and C in a 5-stations assembly line 

Time events. Since the time scale is managed in a continuous manner, we are particu-

larly interested in two time events: (a) Tk
IN

, the time instant when the first unit in run k 

enters the line, and (b) Tk
OUT

, the time point at which the last entity in run k exits the 

assembly line. The relationship between these variables is controlled by the block of 

constraints 8. As explained before, we assume Tk2
IN

 = 0. 
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Finally, the production cycle length (T) is obtained by adding the production time of 

the [NK - (m-1)] elements of the last run K to the completion time of the last element 

in the run (K-1). 

 
Ii

iKiKi

OUT

K ymNPctTT ])1([ ,,1  (9) 

Inventory profiles. Through the block of equations 10, stocks of final products are 

monitored over the production cycle at the start and the ending times of every produc-

tion run (t = Tk
IN

, t = Tk
OUT

). These stock levels are represented by the variables Si,k
IN

 

and Si,k
OUT

. For simplicity, we assume that inventory profiles of final products are 

piecewise linear functions (see Fig. 3) while model demand rates are constant values 

represented by the parameter ri.  
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In addition, the initial and the final inventory levels (Soi, Sfi) should match, given the 

cyclic nature of the problem.  
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 (11) 

Fig. 3 illustrates the typical behavior of final product stocks assembled in a multi-

model synchronous line presenting neither idle times nor safety stock levels. As can 

be deducted, the selected cyclic production sequence is P1(k1)-P2(k2)-P3(k3)-

P1(k4=k1), while cycle times verify: ctP1 < ctP3 < ctP2. As the first unit of P2 enters 

the line at t = 0, the initial (m-1) units of P1 are produced at the rate of 1/ctP2 units per 

hour. No further production rate alteration is observed in other product transitions.    

 

Fig. 3. Final product inventory profiles in a multi-model assembly line 
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Inventory carrying costs. Inventory carrying costs due to stocks of model i over a 

single production cycle (ICosti) can be obtained by calculating the area below the 

inventory profile, multiplied by the unit individual inventory carrying cost (ici), as 

stated by eq. 12. 
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 (12) 

Transition costs. Transition costs are due to changeover operations, converting the 

line from running one model to another. The transition cost when changing from 

model i to i' is a given datum: tci,i'. By knowing the model production sequence 

(through the binaries yk,i) the transition cost when launching run k (TCostk) is lower-

bounded by constraint 13.  

 ',)1( 1',,1', iikkyytcTCost ikikiik  (13) 

Transition costs are very important components of the total operation cost, which can 

be deducted from to the productivity reduction produced by variations in the cycle 

time. Other changeover times (e.g., machine adaptations) are assumed to be negligible 

compared to cycle times. 

Objective function. The aim of the MINLP formulation is to minimize the sum of 

inventory carrying and transition costs per unit time, which can be calculated by di-

viding the costs incurred every cycle by the cycle length T, as shown in eq. 14.  

   ][/1
1kk

k

Ii

i TCostICostTzMin  (14) 

Overall, we seek to minimize the nonlinear function 14 subject to constraints 6 to 13. 

Note that the only nonlinear constraint in the model is the calculation of the inventory 

carrying costs (12), which includes bilinear terms. In the next section we propose an 

approximation of the inventory carrying costs which leads an important reduction in 

the computational effort incurred for solving the model.  

Approximation of inventory carrying costs. If all the models had a common cycle 

time, with the assembly line showing neither idle times nor safety stock levels, the 

inventory profile of every product at every production cycle would appear as an exact 

triangle. The highest inventory level of model i (height of the corresponding triangle) 

occurs at the time the last unit of that model exits the assembly line (t = Tk
OUT

, if k is 
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the run producing model i). Hence, we can estimate the inventory carrying costs per 

cycle as in constraint 15. Note that constraint 15 is relaxed in case run k is not dedi-

cated to the production of model i.  

 ]2/)1(2/[ ,maxmax, ik

Kk

OUT

kiii yhnTSicICost  (15) 

As a result, inventory carrying costs per unit time can be estimated as in constraint 16. 

 ]2/)1(2/[' ,max, ik

Kk

OUT

kiii ynSicICost  (16) 

This approximation yields a new objective function (17), for which the inventory 

carrying cost calculation is totally linear. The expression Si,k
OUT

 / 2 can be regarded as 

the average inventory level of model i, in case run k is the one producing i. Note that 

approximation 16 is also valid if more than one run during the same cycle is devoted 

to the production of the same model. In such a case, the average inventory level is 

calculated from Si,k*
OUT

 / 2, with k* being the largest run producing models of type i. 

Finally, the minimization of function 17 is subject to constraints 6-11,13 and 16. 

   

1

/1'
kk

k

Ii

i TCostTICostzMin  (17) 

Through simple analysis we conclude that the closer the cycle times of the various 

models and the larger the production runs (meaning that transition periods have a 

lesser influence), the more precise the approximation. In later sections we show 

through an illustrating example that the approximated model yields exactly the opti-

mal solution with evaluation errors of the objective function below 2%, taking less 

than 1% of the CPU time needed by the full model to converge to the global optimum.    

2.3 MINLP Formulation for a Multi-Model Synchronous Assembly Line with 

Part Supply  

Most assembly line systems require anticipated part supplies from different sectors of 

the same factory before a production run can be launched. In this section we extend 

the MINLP model already presented to account for part supplies. In particular, we are 

interested in including part inventory carrying costs to the objective function, since 

different models may significantly differ regarding the part supply strategy. For in-

stance, customized models usually require a larger stock of parts at the time of 

launching the corresponding production run. With that purpose, we introduce the set 

P of part types. Moreover, we are given the number of parts of type p that have to be 

available in the assembly line at the time the run of product i is launched. Such an 

initial stock level (ISPp,i,k) is assumed to be proportional to the number of units pro-

duced through the corresponding run. In other words, IPSp,i,k = isp,i NPk,i. Note that if 

run k is not associated to the production of model i, then NPk,i = 0 and the variable 

IPSp,i,k is also null.  
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Assuming that: (a) the parts needed to assemble a certain model are uniformly con-

sumed throughout the production run, (b) the parts start to be produced i,p hours be-

fore the run launching time, and (c) stocks of parts destined to assemble a certain 

product are depleted at the time the last entity of the run exits the line, we can obtain 

an approximation of the average stock level of parts of type p required to assemble 

model i, and its corresponding carrying cost per production cycle, as shown in eq. 18. 
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The model objective function is finally expressed by eq. 19. 

   ][/1
1kk

k

Pp

p

Ii

i TCostPCostICostTzMin  (19) 

3 Results and Discussion 

In this section we present two examples with the aim of evaluating the performance of 

the optimization models. The first example is an illustrative case involving the pro-

duction of four product types in a five-stations synchronous assembly line. After-

wards, we analyze the effects of increasing the number of model types. The second 

example is a real-world case study from a trailers production industry in Argentina.  

3.1 Example 1 

We deal with an assembly line comprising 5 stations, producing 4 model types (P1, 

P2, P3, P4). Product demand rates are 0.300, 0.400, 0.100, 0.300 units per hour, cycle 

times are 0.792, 0.950, 1.187, 0.712 hours, and inventory carrying costs are $1.00, 

$1.10, $1.20, $1.30 per unit per hour, for models P1, P2, P3 and P4, respectively. 

Transition costs are presented in Table 1.  

Table 1. Transition costs (in $) for every pair of models subsequently produced in the line 

 Successor 

Predecessor P1 P2 P3 P4 

P1 - 200 100 200 

P2 240 - 240 160 

P3 200 300 - 300 

P4 240 120 240 - 

Average 227 207 193 220 
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In the first step, we obtain an approximate lot size for every product using the model 

described in section 2.1. Run launching costs are calculated by averaging transition 

costs, yielding: $227, $207, $193 and $220 for products P1, P2, P3, and P4, while 

production rates are simply obtained from raising the cycle times to the power of (-1). 

From eq. 5, a reasonable choice for the production cycle time is 43.05 h, and the ap-

proximate lot sizes are 12.9, 17.2, 4.3, and 12.9 units respectively. 

  

Given these results, we arbitrarily fix the upper bounds of the lot sizes (nmax) to 30 

units, i.e. almost double the maximum approximate size, and we solve the MINLP 

model presented in section 2.2, with the exact objective function (14). The model 

comprises 193 equations and 96 variables, 24 of which are integer. Using 

GAMS/BARON 11.3.0 [15] on an Intel Xeon 2.67 GHz we find the global optimal 

solution in 1083 CPU s, amounting to 37.93 US$/h, with a 10
-4

 of optimality gap. The 

optimal product sequence is P115-P415-P220-P35, with subscripts indicating the lot 

sizes. Note that the lot sizes are slightly larger than the ones obtained using the model 

of section 2.1 because the minimum lot size in the MINLP is m = 5. Besides, the tran-

sition P1-P4 shows no idle time as both products have the same production rate. 

Moreover, the production cycle time is 50 h, with the following run launching times, 

given as subscripts in h: P40-P211-P330-P135.9. Transition costs average 15.2 US$/h, 

while inventory costs amount to 22.73 US$/h.  

 

Afterwards, to reduce the computational effort, we solve the model using the approx-

imate objective function (17) and we exactly obtain the same product sequence and 

lot sizes, in only 6.62 CPU s. This behavior can be attributed to the elimination of 

bilinear terms in the objective function. The optimal value of the approximate func-

tion is 37.52 US$/h, i.e. 1% below the actual value.  

 

Finally, when we increase the number of products to 8, the model comprises 781 

equations and 332 variables, 80 of which are integer. In this case, using the approxi-

mate objective function (17) and after 3 h of computational time, the global optimizer 

cannot find the optimal solution and reports a relative gap of 4.88. In fact, using the 

rigorous objective function (14), the solver cannot find even a feasible solution after 3 

h of CPU time. This proves the NP-hard complexity of this combinatorial problem, 

requiring advanced solution strategies when the product variety is wider.     

3.2 Example 2 

This example deals with a real-world synchronous assembly line producing two fami-

lies of truck trailers (A and B) for the transportation industry in Argentina. The line 

comprises 5 stations with 2 workers in each of them. Both models majorly differ in 

their length (9 m vs. 13 m), resulting in a much larger cycle time for the long trailer 

(B). Traditionally, this fact has lead planners to adopt relatively extensive production 

campaigns (80A – 32B) so as to reduce transition times and changeover costs. Howev-

er, the company finance area has remarked that this strategy results in extremely large 
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inventory carrying costs due to high stocks of final products and intermediate (semi-

elaborate) material. Further information on this case study is not given due to confi-

dentiality reasons.    

 

After applying the model presented in the section 2.3, we find out that by reducing the 

run length to less than half of the current value (from 80A – 32B: 400 h, to 35A – 14B: 

175 h) important savings are achieved, amounting to 182,000 AR$/y (23.6% cost 

reduction). Although transition costs increase by 159,000 AR$/y, inventory carrying 

costs reduce by 341,000 AR$/y (257,000 AR$/y from final product stock reduction 

and 84,000 AR$/y due to semi-elaborate stock reduction). Using GAMS/BARON 

11.3.0 solver in the same processor, the optimal solution is found in 2.46 CPUs, 

amounting to 251.98 AR$/h (590,000 AR$/y). In this case, the MINLP model com-

prises only 36 variables (9 integer) and 43 constraints, with bilinear terms accounting 

for the inventory carrying cost in the objective function. 

4 Conclusions 

We present a novel tool for the optimal planning of multi-model synchronous assem-

bly lines, in which different products are cyclically produced through runs or cam-

paigns. The proposed MINLP model permits to find the optimal sequence and length 

of production runs in order to minimize the sum of transition and inventory carrying 

costs. Moreover, the model rigorously accounts for transient periods occurring in the 

line due to cycle time variations. Although the MINLP model presents non-convex 

terms in the objective function, results show that it can be solved to global optimality 

in a reasonable CPU time, for examples involving up to 4 product types in a line with 

5 stations. We also develop a simple approximation of the average inventory levels 

yielding the actual optimal solution with a two order of magnitude reduction in the 

CPU time. The optimization framework finally incorporates the cost of semi-elaborate 

stocks. When applied to a real-world case study of the argentine truck trailer industry, 

savings over 23% (180,000 AR$/y ~ 22,000 US$/y) are achieved. Future work will be 

focused on extending the model application to production lines with larger numbers 

of stations and product types, at the time new solution strategies are developed so as 

to obtain efficient results with reasonable computational effort.  
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